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Abstract

With the demand for higher energy density and smaller size lithium-ion batteries (LIBs), the development of high
specific capacity active materials and the reduction of the usage of inactive materials are the main directions.
Herein, a universal method is developed for binder-free electrodes for excellent stable LIBs by rolling the
electrospun membrane directly onto the commercial current collector. The rolling process only makes the fiber
web denser without changing the fiber structure, and the fiber web still maintains a porous structure. This strategy
significantly improves the structural stability of the membrane compared to the direct carbonized electrospun
membrane. Moreover, this method is suitable for a variety of polymerizable adhesive polymers, and each polymer
can be composited with different polymers, inorganic salts, etc. The electrode prepared by this method can be
stably cycled for more than 2000 cycles at a current density of 2500 mA g−1. This study provides a cost-effective and
versatile strategy to design the LIB electrode with high energy density and stability for experimental research and
practical application.
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Background
Lithium-ion batteries (LIBs) are widely applied in port-
able devices, electric vehicles, and stationary energy stor-
age systems [1, 2]. Energy density is one of the most
important parameters for LIBs. Though much effort has
been made to improve the specific capacity of the anode
and/or cathode materials, the research of reducing the
electrochemically inactive component in the electrode
materials is limited. State-of-the-art battery preparation

process with ~ 10 wt.% polyvinylidene fluoride (PVDF)
and carbon materials as the binder and conductive addi-
tives, respectively, limits the specific capacity and energy
density of LIBs [3]. The reduction of the amount of in-
active materials in the electrode is an effective method
to improve energy density. Therefore, the binder-free
electrode, which only consists of active materials and
conductive substrate, offers a new opportunity to en-
hance the energy density of electrodes [4].
Nowadays, the methods to prepare the binder-free

electrode are mostly hydrothermal synthesis, vapor de-
position, etc. [5–8], which operate generally under harsh
conditions in a limited scale. Although binder-free elec-
trodes can be easily fabricated by electrospinning tech-
nique with a simple, versatile, and cost-effective way [8],
the as-prepared membranes often become brittle after
carbonization [9]; thus, the electrodes have to be pre-
pared by mixing and grinding the carbonized materials
with PVDF in organic solution, which is not only time-
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consuming but also inefficient. The grinding process
could lead to the decrease of particle size, the increase of
surface area, and the exposure of active materials to the
electrolyte, all of which will result in poor electrochem-
ical performance [10]. Therefore, it is extremely import-
ant to design the stable electrospun membrane for
advanced binder-free electrodes.
Here, a universal method is developed for binder-free

electrodes for stable LIBs by rolling the electrospun
membrane directly onto the commercial current col-
lector. The porous structure of the fiber network can be
maintained after the rolling process. This method signifi-
cantly improves the structural stability of the membrane
compared to the direct carbonized membrane. The
power and energy density of the active materials can be
significantly enhanced by the unique binder-free process.
Besides, a variety of polymerizable adhesive polymers
can be used as the electrospun membrane sources for
this study, and inorganic salts or particles can be added
into the polymers to fabricate high performance elec-
trodes. The electrode prepared by this method can be
stably cycled for more than 2000 cycles at a current
density of 2500mA g−1.

Presentation of the Hypothesis
Binder-free electrode is promising for lithium ion batter-
ies with high energy density. A universal rolling press
method is developed for binder-free electrodes for stable
LIBs by rolling the electrospun membrane directly onto
the commercial current collector. The porous structure
of the fiber network can be maintained after the rolling
process. This method improves the structural stability of
the membrane compared to the direct carbonized mem-
brane (Fig. 1).

Testing the Hypothesis
Fabrication of Fiber Membranes
The coaxial electrospinning needles were purchased
from Changsha Nanoapparatus China. The core-shell

fiber membranes were obtained by extruding 10 wt.%
polyacrylonitrile (PAN) and 8 wt.% polymethyl meth-
acrylate (PMMA) in dimethylformamide (DMF) from
outer and inner capillary, respectively. The flow rates of
PAN and PMMA solutions were 0.54 and 0.27 mL h−1,
respectively. A cylindrical roller covered with copper foil
was placed vertically below the needle with a distance of
about 11 cm to collect the fibers. The voltage was con-
trolled at 14 kV. The obtained material was labeled as
PMMA@PAN and PMMA@PAN@Cu after thermal
treatment without and with Cu foil, respectively. The ob-
tained membrane was firstly pressed by rolling press, then
oxidized in air at 280 °C for 2 h with a heating rate of 5 °C
min−1. Afterwards, it was moved to a tube furnace and
carbonized at 650 °C for 2 h under flowing N2. The
oxides@PMMA@PAN and oxides@PMMA@PAN@Cu
were fabricated by the samemethod, where the
inner solution of inorganic salts and PMMA and
outer solution of PAN in DMF were extruded
simultaneously.

Membrane Characterization
The morphology of the binder-free electrodes was
characterized by scanning electron microscopy (SEM,
Hitachi, SU-8010). The crystalline structure of the mem-
branes was examined by X-ray diffraction (XRD, Smar-
tLab, Rigaku) and Raman spectroscopy (Horiba, HR-
800). XRD was tested with the 2θ between 5o and 80o

under Cu Kα source (wavelength = 1.5406 Å). Raman
spectroscopy was tested with an incident laser power of
100 mW from 1000 to 2000 cm−1.

Electrochemical Characterization
The electrochemical performance was evaluated using
coin cells with fiber membrane discs as working elec-
trode and lithium foil as the counter electrode. The elec-
trolyte contained 1 mol L−1 LiPF6 in a mixture of
ethylene carbonate (EC) and dimethyl carbonate (DMC)
(v/v = 1:1). The galvanostatic discharge-charge cycling

Fig. 1 Schematic illustration of the fabrication of binder-free electrodes. The electrospun membrane is firstly pressed onto the current collector,
then thermal treatment to achieve electrodes
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was examined in Land system (CT2001A, BTRBTS) in
the voltage range of 0.01–3 V, and the current densities
are set at 250 mA g−1 in the first 5 cycles for activation
and gradually increased to 2500mA g−1 in the following
cycles.

Implications of the Hypothesis
Pressing process is just the physical combination of elec-
trospun membrane and Cu foil. When pressing, the
solvent-containing electrospun fibers are similar to the
binder and adhere strongly to the current collector. The
pressing process did not damage the porous structure of
the materials (Fig. 2). After carbonized, the Cu foil will
form a strong connection with the polymer. It is worth
noting that this method is suitable for a variety of elec-
trospun fibers, and here, three representative materials
are demonstrated, namely, pure polymer (Fig. 2a),

polymeric composite (Fig. 2b), and inorganic and poly-
meric composite (Fig. 2c).
PMMA@PAN membrane is selected as the example

for the stability study of the carbonized membrane be-
cause the PAN membrane has relatively good film for-
mation, while PMMA@PAN and oxides@PMMA@PAN
membranes have poor stability and similar structures.
As can be seen in Fig. 3a, PMMA@PAN membrane
becomes brittle after carbonization, and cracks can be
obviously observed. In contrast, the PMMA@PAN@Cu
is very smooth with no cracks (Fig. 3b). This method en-
ables the high-quality binder-free electrodes in large-
scale production (about 5 cm × 10 cm) in the laboratory.
To further demonstrate the structural stability of
materials, the PMMA@PAN and PMMA@PAN@Cu are
placed in ethanol solution for ultrasonic treatment for
30 min to test the strength of the membrane. It shows

Fig. 2 The morphology of electrospun membranes before and after pressing. a PAN. b PMMA@PAN. c ZnO@PMMA@PAN. Scale bars, 100 μm

Fig. 3 The characterizations of binder-free electrodes. Images of a PMMA@PAN and b PMMA@PAN@Cu. The stability of c PMMA@PAN and d
PMMA@PAN@Cu after ultrasonic treatment for 30 min. Peeling test of e PMMA@PAN and f PMMA@PAN@Cu. g Raman and h XRD curves of
PMMA@PAN and PMMA@PAN@Cu, respectively
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that PMMA@PAN starts to break at the beginning of
the treatment and is completely destroyed and dispersed
in ethanol after about 5 min, whereas the PMMA@-
PAN@Cu remains intact after 30 min where there are
no visible cracks (Fig. 3c, b). Moreover, PMMA@PAN
powder is ball-milled and coated onto the Cu foil with
PVDF as binder to test the adhesion as shown in Fig. 3e.
PMMA@PAN is easily aggregated during milling
process. In addition, the surface of the fabricated
electrode is quite rough, and the active materials can be
entirely peeled. However, a large amount of PMMA@-
PAN@Cu material smoothly remains on the Cu foil after
the same testing process (Fig. 3e, f). The ultrasonic treat-
ment and adhesion test clearly demonstrate that the car-
bon material of the PMMA@PAN@Cu has a strong
adhesion to the Cu foil [11].
The crystal structure of PMMA@PAN and PMMA@-

PAN@Cu is characterized by Raman spectroscopy and

XRD to observe the differences after pressing the poly-
mer fibers onto the Cu foil (Fig. 3 g, h). The first peak of
Raman spectra at about 1350 cm−1 and the second at
1590 cm−1 corresponds to the D band of defect-induced
mode and the G-band of E2g graphitic mode, respectively
[12]. The intensity ratios between the D and G band in-
dicating the disorder degree of carbon materials. It
shows the same value of 1.2 demonstrating the negligible
impact after pressing the polymer fibers onto the Cu foil.
Moreover, the disorder feature may be caused by the
PMMA, which leads to the uneven carbonization of PAN
and brittle property of the material. PMMA@PAN and
PMMA@PAN@Cu have similar XRD pattern where
both show strong diffraction peaks of 2θ value at 25.0°.
This featured peak is corresponding to layers of the
graphite structure [13]. In short, the carbonization
process of the electrospun membrane has not changed
after being composited with Cu foil.

Fig. 4 a, b Cycling performances of different binder-free electrodes, and the corresponding rate performances showed in the insert images
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Electrochemical Performance
The electrochemical performances of various binder-free
electrodes are examined using a CR2032 coin-type half-
cells. The rate performances at current densities ranging
from 250 to 2500mA g−1 are displayed in Fig. 4a. The
discharge capacity of ZnO@PMMA@PAN@Cu, ZnO@P
MMA@PAN, PMMA@PAN@Cu, PMMA@PAN,
PAN@Cu, and PAN can remain at 260, 248, 202, 163,
174, and 162 mAh g−1 at the current density of 2500
mA g−1, respectively. However, the capacity retention
with the increasing of current density is generally lower
after pressing the polymer fibers onto the Cu foil. It is
mainly because that the pressed electrodes show less
porosity, and some fibers are crushed together, limiting
the Li ions transfer from electrolyte into the carbon
materials. After 300 cycles, the discharge capacity re-
mains at 219, 178, 165, 137, 130, and 124 mAh g−1 for
ZnO@PMMA@PAN@Cu, ZnO@PMMA@PAN, PMM
A@PAN@Cu, PMMA@PAN, PAN@Cu, and PAN, re-
spectively. The capacity retention of the electrodes pre-
pared by pressing the polymer fibers onto the Cu foil
and carbonization keeps almost 100% from the 50th
cycle while the membrane without Cu foil supporting
show poor retention, namely, about 71%, 89%, and 81%
for ZnO@PMMA@PAN, PMMA@PAN, and PAN, re-
spectively. The cycle life of ZnO@PMMA@PAN@Cu
and ZnO@PMMA@PAN is evaluated at a current dens-
ity of 2500 mA g−1 (Fig. 4b). ZnO@PMMA@PAN@Cu
and ZnO@PMMA@PAN show the reversible capacities
of 180 and 96mA h g−1 and the capacity retention of
82% and 55% after 2000 cycles, respectively. It demon-
strates the excellent cycling performance after pressing
the polymer fibers onto the Cu foil.

Conclusions
A universal method is developed for binder-free electrodes
for LIBs with stable electrochemical performance. This
method is not only suitable for the preparation of binder-
free electrodes, but also has the potential to be a current
collector protection strategy. A thin layer of active carbon
material can be coated on the surface of the current col-
lector to avoid the contact of current collector and elec-
trolyte without increasing the content of inactive
materials. It is believed that not only Cu foil but also Al
foil can achieve similar functions. In addition, the adhe-
sion between the binder and the current collector can be
enhanced by coating the carbon onto the current col-
lector. Therefore, it is more convenient to develop high
energy density electrode by utilizing this strategy.
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